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A CONTRIBUTION TO THE THEORY OF ELASWC WAV¥.:
PRODUCED BY SHOCK

Jitt Vaxkx
Geophysical Institute, Charlee Univeraity, Pragus®y

The paper deals with the investigation of slastic waves in an
homagenous, isotropic and perfectly elastic medium produced by a sphe-
rical source on the assumption that the spheroidally distribuled stress on the
surface of the source is an urbitrary function of time. The cass of an
explosive source leading to an exciting function of the shock type is
tnvestigated and discussed im detail. For waves having orders n = 0
and n = 1 the dependence of the marimum amplitude on the distanse
s determined. The distance up to wisch the manner of propagation of the
conasidered waves is affected by the mechaniem of their generation is also
determined.

L. IXTRODUCTION

This pager is the first of a series which are to be devoted to the influence
of the mechanism of generation of elastic waves on the manner of their propa.g
tion. Elastic waves due to & spherical souroe are investigated on the assumpt;
that the spheroidally distributed stress on the surface of the source is generally
an arbitrary function of time. This femetsan in ealled an exciting function.
olal attention is paid to elastic waves gumsonsed by a shock exciting function
f{t) = ot’e==* which may be of certain importance in applied (exploring)
seismology.

The method of series imtreduced into the of elastic waves by
Sumawa [1] was used for the salmtion of the basic omm, the problem being

r reduced by means of the Laplace transformation to tE
Bromwich-Wagner integrals. The papes <aste from the theory of elastic waves .
4ue to a spherical source as developsd by the Japanese seismic school for - P
onio waves as well as for some simple exciting functions. A survey of T
papers on this subject published up to 1936 was by Kawasvamx [2]; the

More important of the recemt papers are those of [3] and Szzawa

o solution of

id Kaxar [4].
%= II. THE FORMULATION OF rss #&GHBLEM AND IT8S S8OLUTION

‘;;,L‘et us assume an infinite, homogeneous, isotropic and perfectly elastio
b characterized by demsity ¢ and the Lesmé parameters 4, u. Let there
B8 in this medium a spherwal aavity of redine ¢ with its centre at the origin
ad let this cavity be the sswsws of clastic waves Purther let r, ®, ¥ be sphe-

risal coordinates and w,, ®,, %, the corresponding eomponents of the vector

A Qﬂm displacement. These compaments of displacement are to be determined
i 4t an arbitrary point of the medinm apiesiug to the source for any time ¢ on
| - #he assumption that the roidalty *: disswilesbed stress on the surface of the
Wity is in general an arbitrary functis: «f usme. The solution of the problem
thms formulated is too difficult and we shail therefore neglect the component

of displacement u,, and shell assume that u, amd wy are independent of ¢.

- Now at the Geophysical Institute of the Czechoslovak Academy of Scienoes.

'8 L.». acoording to Lageadre polynomiale

m Journ. Phys. 3 (1083) 2 L4
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If in addition we neglect external forces?) we obtain for the propagation of
dilatational and shear waves the fundamental equations

o #0260 206 180 10 0

5 - T L o~ leotg n
Ar2par ot v o ety ! '

p *w  Po 2o 1 2 It w :

S ——- —— o - — cot g — = (I ot 1

,u Ct’ brz yoir 7'2 (;(’I ,rz ¢ ¢ q e ( + c ?’) ))
respectively, where

duy | 2uy | Puy | oy R
Ot Tog TP )
2 ::f'ii+f‘l, ,L,i‘.L . 2h)

A r v e

The problem can now be formulated u- toiiiws:
The functions u,(r, ¢, t) and wu,(r, ¢, t) are to he detenmingd satistying
A. the fundamental equations (la, Ihig
B. the boundary conditions on the surface of the sphere

Per = 1) Plcosg),

AP (cos @)

de

(3}
Pro = 2(1)
valid for r = a; p,, being the radial and pg the tungential components of
stress, P.(cosq) the Legendre polynomials of order n, and f(t), x(t) being
arbitrary functions of time.
C. the initial conditions for ¢t - 0
u, - 0 {, =0
11l l), '{l - 0’ (4)
N , Mty = 0.
In addition we shall require
D. that the functions u,. u, for r - » « should he finte or sere
Let us substitute in Equ. (1a, b)

€. 10
I gt
A= - - —¢dz, 3a)
=7l 4
¢ ix
et
1 (zt
2m =— e — Y d: . ’i—)})y
LT r4
-

c+ixo
where the integral [ ...dzisthe BromwicheWagner integral in the complex
€ -\,

z-plane and d)\a‘nd W are functions of the complex variable z.

) Possihly}!gvity could be considered but its effect on the bodily waves as shown
by JEFFrEYS (8] is negligible.

HYexoed, pAA. wevpn. 3 t1uhe
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‘s o : - ,
L(»[f l.fr(’—q{ 4 7] ¢ P ! 71 {d)mt (f — e 2 =0, (6a)
cart o oor o rteg? T ortay A= In

s/ 2 /i L2 s v/ s
?21 ) "Qy : L ! . v]--(/-!—[—('()t([ — 1;(] i cot?q) - U 2T (6h)
&t or or 12yt rt g 72 "
The solution of these equations with regard to condition )i~
& - A 1"11,"13% (izp,r) P, (voxg, (7a)
ys g i o AP alvosg) -
V- BT hLE L iziyr) | s (7b)
e
where
Br ek 2ty By tefrrh (7

and I/ 1. is the Hankel function of the first kind.

The dilatational components of displacement wP3) following from the
solution of Kqu. (7a) for @ and satisfying the condition « 0 fulfil the re-

lations
[ERE &
1 " et 4, d HWY iz
1) o e nt fo ] '!"l' o% g ) (“.
“ 27 j z 2¥idr r'h ey dz) )
c ir
¢ lad
| ot A, U (izdr) dP(cosq)
uv Bt W = 5T AN M Al A 3F S P sb
2 2ai f z 23} r'h dy ‘ (8b)
¢ -joo

The shear components of displacement w® following frem the solution
of Equ. (7b) for ¥ and satisfying the condition & - 0 are given by the expres-

sions
€+ lao
1 ta(n -t 1) By HY (2fr) o,
u® 5 T L P (cosg) dz (8c)
e-1xn
c+ix
1 et* Byl d . d P (cos )
[ I M. A SSY J 1§ S L AR A .
" oA f sy ar O HRDEA) = PR dz . (8d)
¢- im

It is evident that
A (1) i3)
w; == u, - u®

A, and B, arc determined from the boundary conditions (3). For the normal
component of stress at r = a the following holds

ou

Prr Il@ 4 2u —1} = f(t) Poreos g, (9a)
l irfo-a
while for the tangential component we get

cuy n, 1 ¢u, AP (con @)
Py - S t ‘
Pre {’"( o r T «q )},_a 2 d¢ (Vb)
* The indices in ~unicrs w'd have the vniuvs ¢ ;- 1, 2 i this paper.

ofl fo
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the funotion f(¢) in the form
6+l

ft) = 5z f ® o)z, (108)

7l
¢—im

where g(z) is the image of the original function f(t) defined by the expression

g(z) =2z fe~t f(t) dt . (11a)
e
Similarly c+im
0 = f “ ) dz 10b
xt) =5 — v dz, (10b)
. €-~{a0
where ®
y(z) = z fe~sty () dt . (11b)
[
Using Equ. (10a), Equ. (9a) can now be written
e+l
= ,‘(cos 5 9) f — g(z)dz. (12a)
€¢~la
Similarly w‘ith the help of (10b) Equ. (9a) can now be written
e+im
iP, 1
¢—im

By substituting (8a) and (8a, b, ¢, d) into (12a, b) we get from (12a)

[Eal ) 64l

P.(oong) f e"{ 2uM, 2u(n +1) nK __ Py(cos ¢) f es!
2xi z a'/-z’ﬂ}‘A" * T o dz =" 2ni 9(z) 2
—lw e e (13a)
and from (12b)
¢+lo o+im
dP,(oosg) 1 fe" 2ul, 1N, } _dP,(cosp) 1 fe"
—dp 2w ) wlaves e BT T aa ) TR
F th ¢—im 6 ~lao (131'))
i K
rom e 9 + 20(n -+ 1) 37 ¥(2)
4, = o , (14a)
L — M,
B, —2 (g) 2e) = Mo ye), (14b)
1 ” n
where we introduced the abbrevxatnons
K, = (l—l)ﬂ‘.‘ll/.(uﬁﬁ)——uﬂﬁ HY . (indp) (18b)

100 . - “laggus . puz wppm. J (1006 8
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M, = {25,; (B0 + nn + 1)} Htlizpia) — (15d)
— (20 + 1) igB,6H, (izB,0) — (:p,0)* Hu(iz10)
Ny = — 2t — 1) Hu o) + (n + 1) ispaHBizBen) +  (geos
+ (zBsa)* HQ, 1 (izBsa) .
Substituting expressions (14a, b) into (58, b) and (8a — d) we finally obtain

e+im .K'
9(z) + 2n(n + 1) 3" 7(2) ;
1 er! N, H3 v (izfyr)
“wm ) 7 2, pi - Daloosp)ds, (16e)
1 [ e 2Ly g(z) — M, y(2)) (;1.) HE y (izfyr) AP (cosg) ’
e e e R
and for the components of displacement
o4l Kn
g9(z) + 2a(n + 1) 3= »(2) :
1 et N. d H;‘:-‘I,(lzpl')
& = 5 - PTTOR 3 r P (cosgp)dz, (17a)
o-im
e glz) + 2n(n + 1) B2 y()
uu) == _l__ e__‘: - ~ Nl H‘ﬂ‘l‘ln(izﬂlr) dPI(°°°¢) dz (l?b)
P T 2 z 218300, r'h de ’
e+im
_1 % 2n(n +1) {L.g(z) — M, y(2)} HJ\ 1 (izfsr)
uih = e f - iiE{Nj). h P (cosg)dz, (170)
¢ ~10
o4im
-1 2L glz) — M yz)1 d . dP (cos ¢)
b Bk f T MpNQ., 7 3; I H R (izByr)} —dp dz. (17d)

#=1i0

The images g(z) and y(z) have been calculated for a number of functions f(¢)
and x(t) [8, 7], we can thereforc assume them to be known. It remains therefcre
to complete the solution of the problem to carry out the integration of the
Bromwich-Wagner integrals in (16a, b) and (17a — d).

II1. BOLUTION FOR SHOCK-PRODUCED WAVES

In the present paper we shall consider source of explosive character, i. e.
that the boundary oconditions (3) on the surface of the spherical source shall
be specialized by assuming y(t) = 0. This reduces our problem to y radial
stress or pressure which is &e case in practice with explosions. The bomndary
conditions then take the form '

Per = — [(8) Py(cos @), p, =09 (%)

‘) The minus sign expressss the fact thai tho pressure points in the oppesite direc-
tion of the intermal normal «f the sphere. P

Coschon. Sesmse: Ways, ) (J088: 7 < 10k
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and the components of displacement Equ. (17a — d) reduce to

€4 loo
—1 et g(z) d HY .y (izﬂlr)
@ — _ . AN e n+ AT D s '
u{ i f g O, dr s P, (cosg)dz, (17a)
¢ -log
[ ERE ]
-] et g(z) HQ .y (iz8,r) dP(cosg)
W . I A RE A S JoIm 1z 7b’
U o f 2pr Q) dg (A7b7)
e iw
¢} loo
o et 2n(n + 1) L, g(z) TP (i) o -
w S o f A N2, e Paeosy)dz, (17¢7)
¢ i

- -1 at o], z ) S
U = f‘ L g(z) 1 ‘-'-{r‘h//;p.,(izﬂzr)}‘“ HCOSP) 4o (1)

2n7i #pr N L, rodr dg

n=en
c iw

Gty Lat T M
a3 Nt \.\\, ) . 03 \ |
N ~ '
/ i N N P Nt ]
02 N ~ ) \ AN :
al \\ \\ — 01 \\J\ 1
0 i [~ 0 [ ey S
c ¢+ 2 3 4 S5 6 7 8t 5 6 7 8 ¢
Fig. 1a. Timo dependence of the function Fig. 1b. Tine dependence of the fancetion
aox*tro~t for different salues of x, a e &t for different vadues of vioa 1,
v — 1. == I)q2 0680, i, == 1-274.

There still remains to determine the character of the exeiting function f(h).
To approximate actual conditions during explosions as well as poszible let

us choose as the exciting function a fairly general shock function %]
fity =0, t << O,
18a
f(t) = oatre 2, t2>-0, (182)

where o, a > 0 are real parameters, v a non-negative integer. f(t) versus ¢
for various values of v and » is plotted in Fig. la, b,
The image of the function f(t) is the function 6]

g(z) = 0.
B vioz
gz) = .(;WF RYSTE (18b)
for which in the following waves having orders n - 0 and n 15) will be
investigated.
8 Waves of order n. - 2 wil be the subgo tof the - i part of ¥ caper to be

published in the future.
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Expressions (158 — e) reduee to the form

“u
!"° = ’u. ‘ztﬂf AMO y

o \'s
M, = —i (A:, __) e—whg-" Qo

mizf},
whero Do = (1 + 4,20) (Ba)? + 2(zB0) +- 2.
All the components of displacement excepting ug® are equal to zero. We thus
have the case of spherical waves with a dilatational (radial) component of

displacement. For u we can write u, and the integral (17a°) becomen after
substituting the corresponding quantities and rearrangement

€¢+-1a0
1 (1 4 2y explz[t - po(r - )b y) 19
VT 2a0 2prt 28200 )
¢ -lo0

Introducing the image (18b) of the chosen function into (19} we obtan for
{t—pur —-a)] >0
¢ i

_ 1 voad f (1 + zyr) explaft - - By(r —all} 4, (20)
17 2a0 2urd (z 4 )1l g o

The integral (20) was evaluated using the path customary in the evaluation
of Bromwich-Wagner integrals [7]. The integrand has simple poles at the

points z, , = (ap,) " Ho + i) where @ - - — (1 1- A4/2u)7Y, @' — (1 -+ A/2p)7" .
. (1 4 A p)*» which are the roots of the cquation
Qoo(z) - 0 (21)
and a (» + 1)-multiple pole at the point z3 - -- .
Introducing the abbreviations
& =: apyx, = '{E , Ty -t pdr—a)7 = 73‘;;‘1 ) (22)

we obtain for the displacement (20) the expression

w g S, & S e R
v 2u(l + A/2u) R? ¥ToiSol (v - k)! [(@ + & + w1kl '
) 1 [(1 + wR)* (' R)3]' or
R N L B AL l] + o + &) + o 1]h I TAMR (23)
. 8in (w’t, + arctg T—{:’Ig)R— — (v + 1) arctg J‘:__)} , T, >0,
%, = 0, T, <O0.

This expression represents a travelling wave produced by a spherical source
for the given exciting function. The first term in the curled brackets, which
is due to the pole at the point z = — x represents the forced portion of the
wave,® while the second term which is due to poles satisfying Equ. (21) re-
presents the free wave.

¢) See Chapter 111 para 3.
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oosing especially » == 1 reduces equation (23) to

. @b {[u —¢R) T, + R 2(1—&&@].,_;,. +
1T 2u(l + A/2u) R |L[(0 + ) 4 0?)  [(w + )+ o]
1 [(14+oRP+ (R o'R @’
+ = ——_—[(w TR e e“T gin (w T, + arotg 1+ wR 2arctg(u E)}’
T, 0, (24)
“ =0, T, - 0.

At a oomsiderable distance from the source, i. e. for 7 ‘> a no great error is
committed when calculating the displacement u, if only term~ having the low-
est power of 1/r are considered, higher power terms being neglected. Then

_ a'f,o L {[» 1 i, _~‘2$(w r £) ]p P
= 2u(l+A4/2p) R (L [(w 1 ) + 'Y - [(w + £)% -+ w'8)? !

1 (0! + w'?)'h w.(, W m'» .
+ P @+ & + o] e“”: gin lw't, -+ arctg - 2 arctg o+ £ (26)

T, >0,
T, 0.

®
1]

[

)

The time dependence of the free and

Ty forced waves and the curve of the
resulting displacement for the para-
i meters ¥ = 1, § I for r == a and
A S - r > a isshown in Fig. 2and 3 respec-
L tively on the assumption 4 - 4 which
— 1 -1~ 1 for rocks in the carth’s crust is

“' reasonably satisfied |9). The resulting
displacement forr « and for r >a
starts from its rest position sinoe for
N M 7, = 0 the free and forced waves can-
D cel. Even though theexciting function

\
Vi

N
/
[
!

/

F AN

A N
N\

T S

b

N
>

éeééé‘éoegaﬁggi
gé«egeﬁ

—
&S VL

\s_/

012345‘7@ 0! 2 3 4 5 6 7iyq
Fig. 8. Waves of order n = 0. The curve of Fig. 3. Waves of order n = 0. The curve

the displacement u, forr = a; » = 1, § = 1.  of the displacement u, forr pa;v =1,
sy, forced, u,, free part. & = 1, u,, forced, u,, free part.

A%@mﬁﬁﬂﬂm&ﬂﬂﬂﬂﬁ.ﬂﬁﬂﬁ%ﬂﬁ@mw%w®m*2



A Contribution to the Theory ot Klasts: W e Froufre cd by Nhie
Approved For Release 2006/12/27 : CIA-RDP80-00926A006800060001-2
is aperiodic the resulting wave is a damped periwdic warve Bevanse of the
factor e~€n: the damping of the forced wave depends on the parameter £, while
the damping and frequency of the characteristic wave depends on the roots
of equation (21) about the physi eaning of which we shall deal in more
detail in para. 3 of this chapter. Figh. 2 and 3 represent of course the time de-
pendence of the displacement only for two limiting cases (r == @ and r > a).
The dependence of the dis-
placement «; on both the

(5! J%.
Fig. 4. Threo-dimensional graph for “.m(‘ variable 7, and the
@l waves of order 0, v 1, § = 1. distance r from the source
(i. e. the reduced distance
a2r R) is fully expressed by re-

presenting the wave motion
in a three-dimensional dia-
gram. T'he three-dimensional
(Fig. 4) fory — 1,& = 1 shows
that the amplitude of the pe-
riodic waves decrease within-
creasing «istance according
to a certain law?) without
the character of the wave
changing. The damping of
the resulting wave also decreases with increasing distance. As against the
originally strongly damped waves in the vicinity of the source the wave
tends to become undamped at greater distances from the source.

art

\ l\
) “““ \\\

— 6 7 ¢

4

2. Waves of Order n = 1.

Let us assume 4 = x4 which implies 8, = Vﬁ_ﬂl. Expression (15b — ¢) will
then be of the form

/s e~ 0
Ky = () St e + s +9).

I = (nizﬂ,) u.z,; o {(Ba)* + 3)/3(28.a) + 9},

M, = —( : )’. 30T (B(eBaa)t + TVB(Paa)t + 36 36)'3
mizflg 62p4a’ @) ) ) >
2 s - asfly
and expression (15a)
0 _ 3"‘#(2/ni2ﬂﬂ)‘/' a9k QO]
L= — a

zpaa? o’

where Q. — (28,0)* + (3 + 7/)3)(26:0)* + (18 + 13/}3)(2psa)* +
+ (18 + 18)/3)(zB;a) + 18)/3

and . = (2f,a)® -+ 3(z8ya)" + 6(zfya) + 6.

') According to the law investigated in chapter IV para 1.

Canabagl, Jovrn, PR M 8 2006/12/27 - CIA-RDP80-00926A0068000406801-2
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I expressions int we obtain for the compo-
nents of displacement (7; > 0)

¢+l
¥ vlaad G{(z) exp{z[t — B.{r — a)]}
(Y R—— L]
s 2ni ufiyrd f 2z + &)t 10(2) dz, (26)
6 —im
where -
O = Py(cosg)/}3, cp =,
CP = —4P(cosp)}3, - 2 dPi(comg)
l 3 de

GP(2) = {(2048)% + 3(2B3a) + 6(28,a) + B} . {(2f4r)? - 2} 3(z3,r1 6}
OP(z) = {(220)* + 3Y3(zBaa) + 9} . {(zhar) 1 1},

GP(2) = {(z8:2)* + 3(2B8)* + 6(2B,a) 1 8} . {(2B3r) + |3},

AP() = {(zB:0) + 3V3(2Bs0) + 9) . {(z7:r)" + (2Byr) + 1} .

Again the path of integration used is that customary when calculating Brom-
wich-Wagner integrals. The integrands have simple poles at points satisfving

equation

Lg(z) -0, (27)
a (v+ 1)-multiple pole at the point z = —« and a double pole at 2 -= 0. The
roots of Equ. (27) z, 3 = (aff;) " Nw, & iwy), 24 - (@fy) ‘o, 2z,  (affy) lw,
were determined by means of the values e, - -1.58016, @y =: 2.77111,
wy = — 2.77843, w; = --— 1.10272 calculated to five decimal placesx by means

of the Griffe-Lobachevsky method [10]. The contributions from these poles
correspond to the free wave, the contributions from other poles vield the foreed
wave. The portion of the displacement u{® corresponding to the forced wave
is denoted by ul) + 4’ while the portion corresponding to the free wave is
denoted by u{} so that

WP =l b 4. (28)

Introducing in addition to the earlier abbreviations (22)

n - afyx, Ty = ;ﬁ ) (29)
2
we get for the components of the forced wave after the integration of (268) the
expressions
la(afs)r 1D {ﬂ ( . oY+ l) }
u® = YOV e YT L R 1}, T,>0, (30
o U AR (gt n * ‘ (30)
u(O") = s T‘ < 0 ’
where _ —
DV — 2003, DY =CP 3V3 , Dy - C(Im/zl/:;
and further

yig('P g7

w = Y000 0 L g T,> 0, (31)
o /‘ﬂi(aﬂﬂ).m ! ¢

u;‘;’ = ( s T‘ < ®
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where
’, {'. ( L= “‘,;."-
BY = {‘_ [ : Nt bkl gy D
! k‘}-‘o kol (v A k7o :
Ky v {c,
A I a)(“‘”]2,(—lf%k5+lﬂ(—-W"“””-
K, 0 .- 0
v ok Kk
LT S k . k ke ; )
l (‘ 1 6) /Iv. ky -k, ko(}ﬁ_){’*-}(_ ) \)}
k0 A'ﬂ

The expression (r'(,-in.) ( -\) is the keth derivative of the expression G (z) at

the point 2 r. The waves u are similar to those which Sgzawa and
Kanal [4] denoted by forced waves of the first kind and « to those denoted by
foreed waves of the second kind.

By the integration of (26) we further obtain for the components of the
free wave

Rl k1 1) Y(§) gty H2 e A2 D2y ! RIS N
PYLS ] "”(”ﬁ'l)' (’7“ [ 5 ('kj'(‘“u' - |((I; ! ,'}’ )(li ’]J )] remn .
? Al ’ Iy 1 193
v 2, R ]k G (g - gyt Iy anlteog )t o ey [T
' l
. 0] . , ¢
. 81N m;T; - (v - L)arcty o1 AL P T, - v, (32)
yoA oy [
{ m
oy = U, r, - 0.
where
al' = w} 4 3w} | 6oy {6 BoHop o 1),
! « b . .
bl = wd - Ba(? 20 ¢ 2, o
& P ‘e 13 ) .
A = (0] o) K 2| 3, R+ 6, g = it Vs )
’ . ” .
dV = 2w R + 2l,’ 3 R, APy = en K,

p. al/a, ’
at = ol -+ .3V.¥(ul 9 w2,
Y

b = (2o, + 3l 3),
B =g, o (0 — ey RY o o R 4L,
dy' = “'1’1‘) f A3 '.)mlm;lt'* + m{lf s
by o'
W = are i1 e )
Yy = arctg aP t- arctg -
3 3
Gl o= (0} | 3wk | 6oy 4 B (ofRE '_’Lf:;.,“[{ v o6, k 2.3

Gy = (0} 3(1):7’ e, 1 B R - V'.-E)’
Y = (0? . :;}_ Bon A N(ewk 1 1),
G2 o= (ol - 3] 3o + (IR + o R 1),

Iy = (— D¥wi(my — mg) [ (o — )t ”‘;"l )
3
ro=llest s

3
* )
b= 2 arctg
WA s
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| component ufl’ for r = a; v =1, { = 1.
201 / Fig. 8. Waves of order n = 1. Curve of the
\\\ / component u{¥ for r = a; ¥ =1, { = 1.

» \ ,,/ Fig. 7. Waves of order n — 1. Curve of the

© 10— /il component uy’ for r = a; v =1, £ = 1.
\ gl g Fig. 8. Waves of order n — 1. Curve of the
Qs N 4 component ug® for r =a;v=1,§ = 1.
/ /74 it M Fig. 9. Waves of order n -= 1. The component
0 —= == of the resultant displacement w, for r - a;
11 yv=1¢&=1
03 Fig. 10. Waves of order n = 1. The component.
/ of the resultant displacement u, forr - a;
-40 v =1,&=1L
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Fig. 11. Waves of ordern = 1.

Curve of the component

u for r > a0 v = 1§ l.

Fig. 12. Waves of order 1.
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Curve of the component u,"
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wand
S, m o~ wt, 8; = 2w,0, ,
S, T W, -y, S; = w, ,
Sz Wy~ oy, S;:“’l,-
Fer v = | cxpressions (31) reduce to

WY e .L’l:*i'i..'fi-l'.‘..{( rg g M )
o= R —o W T 2T a0

(33)
aykRY R ) ,,(m;i’kv+~zs;f*R+@;v)},
. ,Ill' =0 E)
mi‘;-";.n, T. <o,
wher
p = e+ wgl(y o gl 0 (2 ey o ) [y @)t 0);2] .
I Ry O PR
b= 2] nne 6B 12} mr 12)ay,
(?’ = o it 4 1802 — 36y 4 36,
A= gt 120 4 18y A2y i
Bl'= 3t + 18} 32 — 24| 3y . 12] 3,
Y= iyt - 36n + 36,
aP AP 0,
by’ = mt B by — by B = — 4n® + 9 — 120 4 6,
o = W2+ 3V -6l 5 6]3, & = 3)3e —6)3n + 6}3,
a?): Uz 0, -
B - - 3‘,;;.,’2 — 9y, BE = 3y — 61’37&} 9,
6 - ot 3l 3y b9, P = —29 4 3)3,
aP = nt — 3} 32 + 02, UL =~ 4y + )3t — 18y,
B gt 3 B — 0y DY = 3 — 8)3n + 9,
M mwr—3)sn 49, G = — 29+ 3)3.

For the forced waves of the first kind (30) and for the free wave the shape of
the corresponding expressions forr - 1 is evident; we shall therefore not write
them down explicitly.

The numerical results for both the components of the forced waves uf,
" the components of the free wave « and the components of the resultant
dixplacements on the surface of the spherical source r -=-a for » == 1, ¢ 1

T -
(n:= V.’() are given in Figs. 5 to 8. From these figures it is evident that the
components of the forced wave of the first kind grow with increasing time
bevond bonnds while the components of the forced wave of the second kind
and the components of the free wave converge to zero. For the above reason
the resulting displacement u# also diverges with increasing time. This circum -
stunce is caused by the fact that the dilatational and shear waves were consi
dered separately. However, since u® | w2 -- 0 the total radial component

Czechosi. Journ. Phys, 3 (1933) 2 f 111
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of the displacement u, and the tangential component of the displacement u, '
is finite. Their dependence as well as the dependence of 4}’ -+ «®', ul) + u¥
on time is given in Figs. 9 and 10.
At great distance from the source r > a the longitudinal radial component
of the displacement ' behaves as 1/R while the transverse rashial comya.
nent #{® behaves as l 'R* For the tangential components of displacement

on the other hand the I(mgmulnml component sl hehaves o1 M ulnle- the ‘
transverse component w4 as 'R, Thus at ~uffictentdy great bovac v m

the source the tmn\wrlw radial component #® and the Lo tnd L dangen— i
tial component ul become negligible and rlu- redial e NERTE

character of a purely dilatational wave while the tangentiai <m0 has

the character of a transverse wave The time dependence of these o aoia o ota
(ud u@®) forr » aixshownin Figs 11 and 12
The three-dimen<ional diagram for w, Fig 14 wlacl ropreserts both

m————— G, ——

time and space dependence shows that conditions ane mene canplicated for
waves of order » I than tor waves of order o 0 OF grostest anterest s
the fact that even for B 2 the orginal simple maximum split< up into
two quite distinet maxima. For 3 the second maxvimum already exceeds !

the first in magnitude. The splitting up is caused an the one hand by the
transverse component #¥ and on the other hand by the longitudinal forced
waves of the first kind ) the increase of which causes an increase of the
displacement up to the moment of the arrival of the transverse waves. when
ug; and u® cancel.

It is evident from Figs. 9 to 13 that the waves of ordern 1 are not periodie.
This is caused by roots of the expression €,(z) asx will he shown in the follow-
ing paragraph.

3. The Physical Interpretation of the Roots of £.,(2).

The free waves of order n 0 [see (23)] represent a damped harmonie
motion of the medinm originating independent of the shape of the exciting
function f(f). The substance of the periodicity of the free waves lies in the
fact that the roots of the expression Lgy(z) are complex. As Kawasumr and
Yosryama [11] have pointed out it shows formal analogy with the, forced
oscillations of an inertial system. The solution of the differential equation of
motion for an inertial system (x is displacement)

Z - 2xr - nir = f(1) (34)
can be written if the initial conditions are x = 0. & 0 for¢  0in the form
¢ rim
1 (z) e**

£ 5 f _ R ,-dz, (35)

2o 2(z —~z‘)(z - 24)

¢ -ioo

where z;, x4 i '(n2 - %) and ¢(z) is the image of th(' function f(¢y The

physical meaning of » is the damping of the system, 2a/n the free period of
the undamped system and 2x/(n?-— »?)"r the period of the damped syvstem
For the case of elastic waves we get for the displacement wu, [see Egu. (14))

! F(z) g(z) " .
s o AT 36
o f Hz )z - 2y B (36)
iz
112 Yea . !

Approved For Release 2006/12/27 : CIA-RDP80-00926A006800060001-2



A CUoniFsoulion jo the Theory of Biastic Wires FVeducéll by Shoryr
QRBISYCd ForR519952 2005/ 18/3te Sta ot bacation191) He 00O o2

Ly =

is formally quite analogous to expression (35). In the numerator of the
integrand the variable 7', corresponds to the time ¢t and both expressions
differ only by the function F(z), which, however, neither affects the period
nor the damping of the free waves. The denominator of both expressions is
formally identical. This means that the real part of z,, corresponds to #,
the imaginary part to (n?— »*)"s. We can therefore interpret — w/af, as the
damping and 2nap,/w’ as the period corresponding to the system of the sphe-
rical cavity of radius a in an infinite elastic medium characterized by the
parameter f,.

Generalizing this above interpretation for waves of arbitrary order, we are
entitled to denote the expressions due to those poles of the integrand of the
Bromwich-Wagner integral which are the roots of the equation

Doa(z) =0, (37)

as the free waves and the expressions due to the other poles depending with-
out exception on the character of the exciting function as forced waves.
The real parts of the roots of (37) represent the damping, the imaginary parts

El:; times the frequency of the system of the spherical cavity in an infinite

elastic medium. Both these quantities, the same as the damping and the period
of the characteristic waves depend on the radius of the cavity a and on the
parameters of the medium g,.

Now it is quite clear why waves of order n — 1 are aperiodic. This is caused
by the fact that the effect of the real roots of Equ. (27) completely covers the
effect of the remaining pair of complex conjugated roots. The result is that
for waves of order n = 1 the system of the spherical cavity in an infinite
elastic medium behaves like & system aperiodically damped.$)

IV. ANALYSIS OF RESULTS

1. Decrcase of Amplitude with the Distance.

In this paper we shall understand under the amplitude 4 the magnitude
of the first maximum of displacement. Let us now determine the decrease of
the amplitude with increasing distance from the source. This dependence can-
not be expressed directly in an analytic form. Diagrams of displacement versus
time for a sufficiently dense series of distances were therefore plotted from
which it is possible to read off the value of the maximum displaccment with
sufficient precision. The graphical dependence between the amplitude and
the distance was thus obtained. The mothod is very tedious.

The dependence was investigated for waves of order n = 0 for various
values of the parameter « (or &) of the exciting function. The exciting function
was taken to be of the form

f(t) = opxrtre—at,
Its maximum f_, = gy(v/e)* is independent of x meaning that for the same v

the maximum stress at surface of the spherical source is identical for all o
(see Fig. la) and that the displacements are comparable.

") Waves of order n = 2 are again periodic (this holds quite generally for all even or-
ders). Tho aperiodicity of odd order waves in probably not genoral since the proliminery
Investigation of waves of order n = 3 rather points to their periodic character.

Crechosl. Journ. Phys. 3 (1953) 2 113
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Fig. 14. Dependenco of the aniplitude on the distance for waves of order n 0.
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Iig. 15, Dependence of the amplitude on the distance for waves of order n 0,

For a given ag, the quantity & changes only with . The results for » -= I
and & == 2,1, 2 are given in Fig. 14. By a transformation of the relation be-
tween 4 and R into the system (log A, log B) the curves tor cach Sfrom Fig. 14

fall into two parts which can be approximated by two straight lines having
different slope (see Fig. 15). The amplitude is therefore

A,
For B > 3.4 1. For B < 3. kisafunction of the parameter £ to the values
of & ¢ 1, 2 there correspond & 1.56. 1.52 1.27 respectively, o1, is also
114
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Fig. 168. Dependence of the amplitude on the distance for waves of order n = 1.
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Fig. 17. Dependence of the amplitude on the distance for waves of order n = 1.
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Apprg\fsgclsi%;l%&?&20*11%%7“&%&% lFt) the effect of the exciting function
on the manner of propagation of waves of order n = 0 is practically limited
tor < 3a. '

In a gimilar manner waves of order n — 1 were inveatigated where, however,
only the radial component u, has been studied up to the present. The depen-
denoce of the amplitude 4 on the reduced distance R for tg.ia case is shown in
Fig. 16, for the parameters » = 1, £ = 1. For comparison the curves for # = 0
are also given in the same figure. In the system (log A4, log R) the curve again
falls into two linear parts having different slope, so that (38) again holds.
Now k = 1.41 for R < 19 and k = 1 for R > 19 (see Fig. 17). The effect of
the exciting function reaches here more than six times the distance of the case
n = 0. For the distance r > 19a the amplitudes of waves of order # = 1 are
1.9 times smaller than for waves of order n = 0.

Yok

AN

“17 TN

~.

as ~] —

@ ad [T} 2 25 J f

Fig. 18. Dependence of the amplitude on the parameter § for waves of order n = 0,

2. The Dependence on the Parameters of the Exeiting Funetion.

The dependence of the amplitude on the parameters of the exciting function
v and x was investigated for waves of order n — 0. The dependence on » for
R = 1 and « = 1 is evident from the following table. To normalize the stress
on the surface of the source independent of » the exciting function was given
the form
/(t) = gyctre—at,

where ¢, was determined so that ¢, = 1 (see Fig. 1b)

[+
v c, ul/;.
0 0.368 0.083a
1 1 0.102a18,
2 0680  0.115q8!

3 0274  0.108a8
The deciding factor here is the quantity 8, which according to (7’) is the in-
verse of the velooity of the longitudinal waves. Its magnitude is of the order

116 Yexoca. ¢ma. wypn. 3 (1953) 2
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of 10~510 10-¢ in absolute nn?.'l‘his means that for increasing v the amplitude
very rapuidly decreases. '

The dependence on the parameter « (or §) is shown in Fig. 18 for v = 1
and B - 1. The curve is similar in character to the known resonance curve.
The maximum occurs for & = # which is the value of the damping for a sphe-
rical cavity in an infinite elastic medium. Here again the phenomenon is for-
mallv analogous to resonance in a damped inertial system [12]. Resonance
effects for waves of higher orders are much more complicated®) and are not
studied in this paper.

V. CONCLUSION

The above paper is devoted to the investigation of elastic waves produced
in an infinite homogeneous isotropic and perfectly elastic medium by a sphe-
rical source if the stress on its surface is in general an arbitrary function of
time. A general solution of the problem was found. Next, waves of order
n == 0 and n —= 1 produced by a shock function of the type ot*e~**' were
investigated. On analysis of the results it was shown that in a certain vicinity
of the source (r < 3a forn = 0 and r << 19a for n - 1) the amplitude does not
decrease according to the law 1/r but according to 1/r* where k> 1. In the
neighbourhood of the source the amplitude also depends on the parameters
of the exciting function. The significance of the results in applied seismology
will be the subject of another paper.

My hearty thanks for his understanding and advice go to the head of the
Geophysical Institute of Charles University, Prague, Prof. Dr. A. ZATOPEK.
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K TEOPUU VIIPYI'UX BOJIH BLI3BAHHBIX ¥VJIAPOM

((‘.();wpmuum' npeb Y UeR cTaTH)

Jikf VANEK
FPeopuauveckuii uemumym Kapaosu yiuusepcumema, I paeal®)

WceitenyoTest yupyrue BOJHBL BLIBBAHHBIC HIAPOBWM MCTOYHMKOM B Oecko-
HeYHO pacipocTpaHeniiol o;(HOpooH, MB3OTPOINIOK M COBePLIEHHO yupyro#t
cpejle, PN 4eM MpeUIoaraeTes, MTO HallpfeHue pacipejesaenHoe cdepo-
MJIaBHO HA HOBCPXHOCTH MCTOUHUKA HRJAACTCS [IPUN3BoabHON PyHKuMelt Bpe-
menu (BosOyalawmas Gyurimsa). Beuiy caomnocrn BwamMcieHuit npeHebpe-
raercs asMMyTaJlbHOW coeTaBJIMAOUEH cMeDICHHA H PAcCMATpPHMBAGTCA TOJBKO
AByXpasmepuas npobJjeMa B ILIOCKOCTH ¢ - - KOHCT., pellleHHe KOTopo#t ocHo-
Baio Ha peulenun vpasheuuit (1a, b) ¢ yuetom yveaonuit (3), (4) u (D), n koro-
pHle ¢ HOMOIIbIO HpeoGpasoBaHuA /1 aniaca CBOIATCA K BLIMHCIIEHHIO HITETpajoB
Bpomeuw-Baznepa (17a, b, ¢, d). Beusy Hexkoropoit ero BamKHOCTM JJIA IIPAKTH-
geckolt ceticMo.tornit, Ghil BLIUKMCIEH W MOJBEPTCA 00CyHIeHNIo cayvalt mcrod-
HIKA B3PHIBHOTO X4apaKTepa, KOTOPHH XapaKTepMsyeTcss I'DAHUYHLIMU YCJO-
Busimu (3'), npu HeMm 1upepnoaaraeTcA, uto Bosly:paloman Pymxuma f(t)

*) The phenomenon is again connected with the zerus of expression (37).
10} Tenepr I'eopusuuecknit Mucruryr Yexocnopaisont Axaxemum Hayk.

Crechogl. Jouru Phys. 3 (1883) 2 M7
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RPeAIAETCA BRIpajKeHHeM ) H XO[{ MBMeHEeHRA KaKOBOR NMOKASAN HA PWO.

la, b. IlogpoGHo mMccaenyloTeA BOJHH mMopARKa # = 0 H n = 1, Pemenne

AnA n = 0 paHo BHpameHHeM (23), B KoTOpOM NepBHit WieH B COCTABHWX

cKo0Kax npejcTaBIAeT BRHYKIOHHYIO COCTABIAIIRYIO BOJHH & BTOpolt TieH —

co6cTBeHHYI0 BOJIHY (HPHUMHA KOTOPO# — I10JTI0CHMEe BHATOHHA HOAHHTErpab-

HOro BHpaxenun (20), ynosaerBopsiouiue ypasHenuio (21). Jlnsa wacruoro cay-

9aA ¥ = 1 (cM. 18a) uMeer MecTo ypaBHenue (24), 11A BHATHTENBHOTO Ke pag-

CTOAHNA OT MCTOYHHKA CIIpaBe[inBo ypabHeHHe (25). Xopn usMeHeHMA cMe-

ImMeHHA yKasaH Ha puc. 2, 3 u Ha TpexpasMepnolt quarpame puc.4. Hecmorpn

Ha TO, uTO BO3(YIKJAWUAA (GYHKIMA AaNepHOANYECKAA, pPesyJIbLTHPYIOIMIan

pojiHa Oyfer satyxawomed nepuoaudeckoit BodHo#. Y BoaH mopagka n = 1

penieHye A BRHYMICHHHX BOJK NEPBOT0 poja (HeaKCMOHEHLMAJBLHAA CO-

CTABJIAKINAA BHHYMIeHHBIX BOJH) JaHO BhpaxieHHeM (30), [JIA BHHYH(IEH-

HHX e BOJIH BTOPoro pona (9KCMOHEHIIMAIBHAA COCTABIAIIIAA BHHYKICHHEX

BOJIH) cripaBe;IMBO BhpaseHue (31), a fas coGCTBOHHEIX BOJH BRIparKeHUe

(32). [aa vyacrHoro caysas » = 1 BLIHYKAEHHK® BOJHH BTOPOro poja omnpe-

ReaAwTCA BepawenueM (33). PeayabraThl BuYHMcIeHMH NpelcTaBlIeHHH Ha

pucynkax 5—13. Boanu mopaaka n = 1 GynyT anepHoaudecKMMH 1 pacXojia-

omMuca (B ouJy cBoficTBA BWHYM(JEHHHIX BOJIH [1I€PBOI0 pORA PACXORHTHCA),

ecJM  paccMaTpHBAIOTCH OTAe/bHO IIPOROJLHEE M IIOHepeYHHe YacTH

(cmorpu puc. 5—8). Ho pesyabTHpylomas pagmajgbHag M TaureHIMaIbHAA

COCTABJIAIOIAA CMeNleHUMA MMeeT KOHEeYHYI0 BeauuuHy (cm. puc. 9 m 10).

Jasee oGpamaercs BHHMAHME HA AHAJTOTHIO MEKAY HccaenyeMoit npobiemolt

M BHHYMJXEHHHMH KoJeGaHWAMH MHepTHoM cucteMun. OfoGmaerca moHATHE

co6OTBEHHHX B BHHMYHGIPHHWX BOJH M A Goldee BHICOKOTO UX IOpAAKA

H 06BACHACTCA CYIWHOCTD 1IEPHOAHYHOCTH HJIH AIIePHOAMYHOCTH BOJH, KOTOpaA

- 8aKJIOYACTCH B XapaKkTepe HYyJeBHX ToueKk Bupaskenusa (37). B noapoGuom

\ obcymaeHHH HCCAeAYeTCH 3aBHCHMMOCTb, COTNIACHO KOTOpPOit yMeHbLHIaeTCs aM-

mMTyaa (nepBH#t MaKCHMYM CMellieHWA) BOJIH IIPH BOSPACTAHMM PAaCCTO-

3 AHHA OT MCTOYHMKA. JaRNCUMOCTb BHIPAKAETCA COOTHOIleHMeM (38), rae jin

BOJH nopaaka n = 0 Gyaer k = lupu R > 3u k > 1 npn R < 3 (cMm. puc.

14 n 15; 3gech B — npuee;ieHHOe PACCTOAHWO OT HCTOYHHKA BOBOYHIACHNA, CM.

(22)); nna BoaH e nopsaika n = 1 6yner k = 1 npnu B > 19 u k > 1 npn

R < 19 (cmotpm puc. 16 n 17). AMNIUTYA TaK:Ke BABHCUT OT NapaMeTpoB

BoaGyxaaomelt pyuxnun (cM. raduuny crp. 116; Ha pnc. 18 BUAHN Ha9HHA-
10IMECA pesOHAHCHHE ABJIEHMR).

ITocrynuio 6. 12, 1952.
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